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BACKGROUND: A structurally diverse group of chemicals, including dioxins [e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)] and polycyclic aro-
matic hydrocarbons (PAHs), can xenobiotically activate the aryl hydrocarbon receptor (AHR) and contribute to adverse health effects in humans and
wildlife. In the zebrafish model, repression of sox9b has a causal role in several AHR-mediated toxic responses, including craniofacial cartilage mal-
formations; however, the mechanism of sox9b repression remains unknown. We previously identified a long noncoding RNA, sox9b long intergenic
noncoding RNA (slincR), which is increased (in an AHR-dependent manner) by multiple AHR ligands and is required for the AHR-activated repres-
sion of sox9b.
OBJECTIVE: Using the zebrafish model, we aimed to enhance our understanding of the signaling events downstream of AHR activation that contribute
to toxic responses by identifying: a) whether slincR is enriched on the sox9b locus, b) slincR’s functional contributions to TCDD-induced toxicity, c)
PAHs that increase slincR expression, and d) mammalian orthologs of slincR.

METHODS:We used capture hybridization analysis of RNA targets (CHART), qRT-PCR, RNA sequencing, morphometric analysis of cartilage struc-
tures, and hemorrhaging screens.
RESULTS: The slincR transcript was enriched at the 50 untranslated region (UTR) of the sox9b locus. Transcriptome profiling and human ortholog
analyses identified processes related to skeletal and cartilage development unique to TCDD-exposed controls, and angiogenesis and vasculature devel-
opment unique to TCDD-exposed zebrafish that were injected with a splice-blocking morpholino targeting slincR. In comparison to TCDD exposed
control morphants, slincR morphants exposed to TCDD resulted in abnormal cartilage structures and a smaller percentage of animals displaying the hem-
orrhaging phenotype. In addition, slincR expression was significantly increased in six out of the sixteen PAHs we screened.

CONCLUSION: Our study establishes that in zebrafish, slincR is recruited to the sox9b 5 0 UTR to repress transcription, can regulate cartilage develop-
ment, has a causal role in the TCDD-induced hemorrhaging phenotype, and is up-regulated by multiple environmentally relevant PAHs. These find-
ings have important implications for understanding the ligand-specific mechanisms of AHR-mediated toxicity. https://doi.org/10.1289/EHP3281

Introduction
Recent advances in genetics and molecular biotechnology have
resulted in a shift in the field of toxicology from observations of
apical end points to investigations of the molecular initiating
events in the adverse outcome pathway (National Research
Council 2007). The aryl hydrocarbon receptor (AHR) is a con-
served ligand-dependent transcription factor that is a member of
the basic helix-loop-helix-PER-ARNT-SIM protein family. The
AHR is known to be xenobiotically activated by a structurally
diverse group of chemicals, including dioxins and polycyclic aro-
matic hydrocarbons (PAHs; Denison and Nagy 2003; Hahn et al.
2017). Upon ligand binding, the AHR translocates to the nucleus
and heterodimerizes with the aryl hydrocarbon nuclear transloca-
tor (ARNT), inducing ligand-specific transcriptional changes
(Beischlag et al. 2008). In vertebrates, the AHR also plays key
roles in regulating a variety of physiological responses, such as
immune and developmental processes, suggesting that too little

or too much AHR activity can lead to adverse health effects
(Esser and Rannug 2015; Murray et al. 2014). In zebrafish, the
activation of the AHR by 2,3,7,8-tetrachlorodibenzo-p-dioxin
(TCDD) and numerous PAHs results in the dysregulation of hun-
dreds of genes and is associated with lethality, wasting, hemor-
rhaging, and defects in the skeletal and cardiovascular systems
(Chlebowski et al. 2017; Denison and Nagy 2003; Garcia et al.
2018; Goodale et al. 2015).

The best-characterized high-affinity ligand used to study AHR-
dependent toxicity is TCDD, a halogenated aromatic hydrocarbon.
TCDD and related halogenated aromatic hydrocarbons are
extremely toxic to most vertebrate species. The developmental
zebrafish is among the most sensitive vertebrate models, making it
ideal for investigating AHR signal transduction and function
(Tanguay et al. 1999). Ahr-knockout mice and zebrafish mutants
have demonstrated that the AHR is required for TCDD-induced
toxicity (Fernandez-Salguero et al. 1995; Garcia et al. 2018;
Goodale et al. 2012). In zebrafish, Ahr2 and Arnt1 are the func-
tional orthologs of mammalian AHR and ARNT (Antkiewicz et al.
2006; Carney et al. 2006). Mammals and zebrafish share many
toxic responses due to their well-conserved genomes, cell types,
tissues, and organ systems (Garcia et al. 2016; Howe et al. 2013).
Although the majority of downstream genes responsible for spe-
cific phenotypes of AHR-dependent toxicity remain largely
unknown, the zebrafish model has been used to identify repression
of sox9b as a key element responsible for producing craniofacial
malformations, and to a lesser extent, cardiovascular malforma-
tions (Hofsteen et al. 2013; Xiong et al. 2008). Cardiovascular and
craniofacial malformations are hallmarks of TCDD-induced devel-
opmental toxicity in fish and mammals (Couture et al. 1990; Henry
et al. 1997). SOX9 (human ortholog of zebrafish Sox9b) is a con-
served transcription factor that acts as the master regulator of carti-
lage development (Akiyama et al. 2002).
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The mechanism by which AHR activation leads to the repres-
sion of sox9b and subsequent developmental toxicities is still
unknown; however, we have previously reported the identification
of a long noncoding RNA (sox9b long intergenic noncoding RNA,
slincR) that is up-regulated by multiple Ahr2 ligands and is located
adjacent to sox9b (Garcia et al. 2017). Long noncoding RNAs
(lncRNAs) are defined as transcripts equal to or greater than 200
base pairs (bps) long that do not appear to code for proteins.
LncRNAs regulate an array of biological processes, including de-
velopment, response to stress, embryonic viability, and cancer pro-
gression (Gutschner and Diederichs 2012; Li and Chang 2014;
Nakagawa 2016). We have used two independent ahr2-mutant
zebrafish lines (ahr2hu3335 and ahr2osu1) to demonstrate that ahr2 is
required for the TCDD-induced increase in slincR expression
(Garcia et al. 2017; Garcia et al. 2018). Furthermore, ahr2-null
zebrafish exposed to TCDD do not display a significant increase in
slincR; slincR is required for typical tissue-specific expression of
sox9b during normal development and is expressed in tissues with
sox9b-essential functions, such as the jaw and snout regions, eyes,
and brain (Garcia et al. 2017). Importantly, slincR expression is
also required for the TCDD-induced repression of sox9b.

PAHs can activate the AHR and are ubiquitous environmental
contaminants that are primarily created during the incomplete
combustion of organic material (e.g., wood, coal, petrol, and oil;
Shen et al. 2013). PAHs are of major concern due to their preva-
lence and potential toxic effects on ecosystems and human health
(Perera 1997). PAHs can be genotoxic and/or carcinogenic, and
in utero exposure has been associated with adverse birth out-
comes (Boström et al. 2002; Dejmek et al. 2000; Perera et al.
2005). In human cohorts from urban environments, prenatal ex-
posure to PAHs has also been associated with increased asthma
prevalence and impaired cognitive development in offspring
(Edwards et al. 2010; Tang et al. 2012).

The present study is broken down into the following four parts:
“PART I: Transcriptional Regulation by slincR,” “PART II: slincR
Contributions to TCDD Toxicity,” “PART III: Investigation
of PAHs That Increase slincR Expression,” and “PART IV:
Identification of Potential slincRMouse andHumanOrthologs.” In
“PART I: Transcriptional Regulation by slincR,” we investigated
the mechanism of slincR repression of sox9b using capture hybrid-
ization analysis of RNA targets (CHART) to determine if slincR is
enriched at the sox9b locus. We hypothesized that slincR binds
(indirectly or directly) to the sox9b locus to repress sox9b expres-
sion, which contributes to the TCDD-induced cartilage malforma-
tion phenotype.We used a previously published sox9bmorpholino
to determine whether sox9b expression regulates the expression of
slincR. We also analyzed the concentration–response relationship
between developmental TCDD exposure and the gene expression
of sox9b and slincR. In “PART II: slincR Contributions to TCDD
Toxicity,” to investigate slincR’s role in the TCDD-induced toxic-
ity pathway, we performed RNA sequencing (RNA-seq) and Gene
Ontology (GO) term enrichment analyses on 48-h post fertilization
(hpf) control and slincR morphants exposed to 0.1% DMSO or
1 ng=mLTCDD.We hypothesized that with the reduction/absence
of slincR expression (slincR morphants), there will be a relief in
sox9b repression, and cartilage-associated GO processes will fail
to be significantly enriched. To investigate the phenotypic impact
of slincR expression on TCDD-induced jaw malformations, we
measured the cartilage of 72-hpf control and slincR morphants
treated with 0.1%DMSOor 1 ng=mLTCDD as described in Xiong
et al. (2008). Due to the GO term enrichment of angiogenesis
and vasculature-related processes in the slincR morphants, we
performed a hemorrhaging screen on TCDD-exposed zebrafish
at 48 hpf. For both the cartilage and hemorrhaging phenotypic
analyses, we hypothesized that the slincR morphants exposed to

TCDDwill have a less severe toxicity phenotype and/orwill be sig-
nificantly different in comparison with the control morphant data-
sets. In “PART III: Investigation of PAHs That Increase slincR
Expression,” we determined if slincR expression was affected
in response to sixteen different environmentally relevant PAHs.
Finally, in “PART IV: Identification of Potential slincRMouse and
Human Orthologs,” we mined multiple RNA-seq datasets to iden-
tify the potential mouse and human orthologs of slincR.

Materials and Methods
All gene-specific primers and probes were obtained from Integrated
DNA Technologies and are listed in Supplemental Material,
Table S1.

Fish Husbandry
The Tropical 5D line of zebrafish (Danio rerio) were purchased
from 5D Tropical, Inc. The animals were reared according to
Institutional Animal Care and Use Committee protocols at the
Sinnhuber Aquatic Research Laboratory, Oregon State University.
Adult fish were raised in a recirculating water system (28± 1�C)
with a 14-h:10-h light:dark schedule. Adult fish were fed GEMMA
Micro 300 or 500 (Skretting, Inc.) twice a day. Larval and juvenile
fish were fed GEMMA Micro 75 and 150, respectively, thrice a
day (Barton et al. 2016). Spawning and embryo collection were
conducted as described in Westerfield (2007). Briefly, zebrafish
were housed in densities of ∼ 500 fish per 50-gallon tank in recir-
culating water supplemented with Instant Ocean salts at 28°C. The
embryos were collected using a spawning funnel, staged, and
maintained in an incubator at 28°C.

Waterborne Exposure
Shield-stage (∼ 6 hpf) embryos were exposed to 0, 0.0625, 0.125,
0.25, 0.5, or 1 ng=mL TCDD (311 nM, 95.3% purity; SUPELCO
SolutionsWithin) or vehicle (0.1%DMSO)with gentle rocking for
1 h in 20-mL glass vials (10 embryos=mL). The 1-h duration of
TCDD exposure was previously shown sufficient to produce the
full TCDD-induced toxicity phenotypes (Henry et al. 1997). The
1 ng=mL concentration was selected to match our previously pub-
lished TCDD exposure paradigm and results in 99–100% of
120-hpf zebrafish displaying the expected TCDD-induced toxicity
phenotype (e.g., cartilage and heart malformations and edema) and
an approximate log2ðfold changeÞ of −1 in sox9b expression
(Garcia et al. 2017; Mathew et al. 2008). We know that TCDD par-
titions quickly into the embryonic compartment, and the half-life
of TCDD is quite long due to a lack of metabolism; thus, this
1 ng=mL TCDD exposure paradigm is sufficient to fully activate
the AHR (DeVito and Birnbaum 1995). During the exposures,
vials were also gently inverted every 15 min to ensure proper mix-
ing. Embryos were rinsed three times with embryo media and then
raised in 100-mmPetri dishes (at 28°C) in approximately 50 mL of
embryo media until collection at 48 hpf or 72 hpf, depending on
the experimental assay. Embryo media consisted of 15mM
NaCl, 0:5mM KCl, 1mM MgSO4, 0:15mM KH2PO4, 0:05mM
Na2HPO4, and 0:7mM NaHCO3 (Westerfield 2000). The num-
ber of embryos raised in a Petri dish ranged from 10–50,
depending on the subsequent assay.

Morpholino Injections
Expression levels were reduced using previously published splice-
blockingmorpholinos (MO) for sox9b (50-TGCAGTAATTTACC
GGAGTGTTCTC-3 0), slincR (5 0-GACCTAAACTCGACCTTA
CCAGATC-3 0), and a standard negative control (5 0-CCTCTT
ACCTCAGTTACAATTTATA-3 0) obtained from Gene Tools,
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LLC (Garcia et al. 2017; Xiong et al. 2008; Yan et al. 2005). The
concentration of slincR morpholino used was demonstrated to
produce no visible morphological effects and to knockdown
slincR expression at ∼ 98% and ∼ 80% upon exposure to 0.1%
DMSO or 1 ng=mL TCDD, respectively (Garcia et al. 2017).
Approximately, 2 nL of a 1-mM [RNA-seq and quantitative real
time polymerase chain reaction (qRT-PCR)] or 1:5-mM (carti-
lage morphometrics and hemorrhage screen) solution of slincR
MO and control MO were microinjected into the yolk at the one-
cell stage. Approximately 2 nL of a 1:9-mM solution of sox9b
MOwasmicroinjected into the yolk at the one-cell stage.

PART I: Transcriptional Regulation by slincR
qRT-PCR CHART. CHART is a method to identify lncRNA bind-
ing sites in the genome (Simon 2013). Zebrafish embryo preparation
for CHART was adapted from Bogdanović et al. (2013), and
CHART protocol and buffers are from Simon (2013). A detailed
protocol is provided (Supplemental Material, S1: CHART Sample
Preparation). In brief, zebrafish embryos were exposed to 0.1%
DMSO or 1 ng=mLTCDD, as described above. At 24 hpf, embryos
were dechorionated with pronase (31:77 lg=lL). At 48 hpf,
embryos were screened for malformations, and themorphologically
normal animals were euthanized by overdose of buffered tricaine
methanesulfonate (MS-222, 200–300 mg=L) by prolonged immer-
sion and monitored under a dissecting microscope until their hearts
stopped beating (approximately 15 min). Whole 48-hpf zebrafish
embryos were fixed with 4% PFA for 15 min at room temperature,
and nuclei were isolated using a Dounce homogenizer and centrifu-
gation. The isolated nuclei were crosslinked using 3.2% PFA and
sonicated for 10min in a Bioruptor® Pico with cycles of 30 s on and
30 s off. Further, 108 pmol of a 60-bp biotin-labeled capture probe
targeting exon 1 of slincRwas added to 100 lL of the sonication so-
lution and incubated overnight at room temperature on an end-over-
end rotator. The control probe comprised of the sense sequence of
the same region, and the input samples did not contain a hybridiza-
tion probe. The capture probes were washed four times with wash
buffer and captured using Dynabeads™MyOne™ Streptavidin T1
(Thermo Fisher Scientific, cat. no. 65601). The input sample was set
aside during the washing phase. The samples were de-cross-linked
using proteinase K (Ambion™, Thermo Fisher Scientific, cat. no.
AM2548) and incubated at 55°C for 1 h, followed by 1 h and 40min
at 65°C. The enriched DNA and RNA were isolated using the
ZYMO ZR-Duet™ DNA/RNA miniprep kit (cat. no. D7001)
according to manufacturer's instructions. To determine slincR
enrichment, 2 lL of RNA pull down was converted to cDNA using
a SuperScript™ VILO™ cDNA synthesis kit (Thermo Fisher
Scientific, cat. no. 11754050) according to manufacturer's instruc-
tions. The genomic DNA pull down was used to determine if slincR
is enriched at the sox9b locus. Both the cDNA and genomic DNA
enrichment were diluted at 1:20 andwere analyzed with primers tar-
geting the slincR transcript and sox9b locus via qRT-PCR using
SYBR® green PCR master mix (Thermo Fisher Scientific, cat. no.
4312704) according tomanufacturer's instructions.

Data analysis. Each condition had 3 biological replicates,
where 1 replicate consisted of approximately 500 48-hpf zebrafish.
The qRT-PCR data were first normalized to 1% input control, such
that 6.644 cycles (i.e. dilution factor log2ð100Þ) was subtracted
from the cycle threshold value (CT; i.e., number of PCR replication
cycles required for the sample signal to exceed background levels)
of the diluted input and used to calculate the DCT for the two
probe sets (DCT=CT½probe�−CT½1% input-6:644�). For DNA
fold enrichment, we next adjusted relative to the sense probe
(DDCT=DCT½slincR-probe�−DCT½sense-probe�), and then fold
enrichment was calculated (2−DDCT). The RNA yield was calculated
using the following equation (2−DDCT × 100%). We assigned

samples that did not amplify (no enrichment) a CT value of 40. The
data were graphed using GraphPad Prism 7.02 software. The prod-
uctswere also analyzed via 1.2% agarose gel electrophoresis.

RNA extraction and mRNA quantification. Total RNA was
extracted from 48-hpf whole embryos using RNAzol® (Molecular
Research Center, Inc.) and a bullet blender with 0:5mM zirconium
oxide beads, (Next Advance) as recommended by themanufacturer.
The RNA was purified using the Direct-zol MiniPrep kit (Zymo
Research) and included an in-column DNase 1 digestion. RNA
quality and quantity were assessed using a BioTek® Synergy™Mx
microplate readerwith theGen5™Take3™module.

For the sox9b-MO experiment, total RNA (500 ng) was reverse
transcribed into cDNA with random primers using the ABI High-
Capacity cDNAReverseTranscriptionKit (ThermoFisher). In addi-
tion, qRT-PCR was performed using a StepOnePlus™ Real-Time
PCR System (Applied Biosystems). The 20 lL reactions consisted
of 10 lL 2X SYBR® Green Master Mix (Applied Biosystems),
0:4 lL each of 10 lM forward and reverse primers, and 15 ng
cDNA. Expression values were normalized to b-actin and analyzed
with the 2−DDCT method as described in Livak and Schmittgen
(2001). We used the following calculation to determine morpholino
knockdown efficiencies:%KD= ð1− 2−DDCTÞ× 100%.

Statistical analysis. Each biological sample consisted of RNA
from 20 pooled 48-hpf zebrafish with 4 biological replicates per
condition (n=4). Results were statistically analyzed and graphed
with GraphPad Prism (version 7), and significance was determined
using a one-way ANOVA with Tukey post hoc test or Kruskal-
Wallis test with Dunn’s post hoc test for data that passed or failed
normality using the Shapiro-Wilk test, respectively.

For the concentration–response experiment, zebrafish embryos
were exposed to six concentrations of TCDD (0, 0.0625, 0.125,
0.25, 0.5, and 1:0 ng=mL) at the shield stage as described in the
“Waterborne Exposure” section of the “Methods.” The 10–lL
one-step qRT-PCR reactions were set up consisting of 5 lL
SYBR® Green Master Mix and 0:08 lL reverse transcriptase
enzyme mix (Power SYBR® Green RNA-to-CT™ 1-Step Kit;
Applied Biosystems), 0:2 lL each of 10 lM forward and reverse
primers, and 15 ng RNA per reaction. The QuantStudio 5 Real-
Time PCR System (Thermo Fisher Scientific) was used under the
following cycling conditions: reverse transcription at 48°C for 30
min, denaturation and activation of SYBR® polymerase at 95°C
for 10 min, followed by 40 cycles of amplification (95°C for 15 s,
60°C for 1 min). Expression values were normalized to b-actin and
analyzed with the 2−DDCT method as described in Livak and
Schmittgen (2001). The 0 ng=mL TCDD concentration served as
the calibrator.

Statistical analysis. Each sample consisted of RNA from 20
pooled 48-hpf zebrafish with 4 biological replicates per condition.
Results were statistically analyzed using R (version 3.4.1) in the
RStudio (version 1.0.143) integrated development environment
(IDE; R version 3.4.1; R Development Core Team; RStudio Team
2016). The data were log2-transformed and initially assessed for
equal variance and normality using Levene’s test and the Shapiro-
Wilk test, respectively. Statistical significance was determined
using a one-way ANOVA with a Dunnett post hoc test (n=4,
p<0:001) from the multcomp package (version 1.4-8), and the
data were graphed using ggplot2 (version 3.0.0; Hothorn et al.
2008;Wickham 2016).

Evaluation of mortality and 17 physical endpoints at
120 hpf . Zebrafish embryos were exposed to six concentrations
of TCDD (0, 0.0625, 0.125, 0.25, 0.5, 1:0 ng=mL) at the shield
stage as described in the “Waterborne Exposure” section of the
“Methods.” The animals were loaded into round-bottom 96-well
plates, with one embryo in 100 lL embryo media per well. We
measured mortality and a suite of 17 end points (yolk sac edema,
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body axis, eye, snout, jaw, otic vesicle, pericardial edema, brain,
somite, pectoral fin, caudal fin, circulation, pigmentation, trunk
length, swim bladder, notochord distortion, and alterations in
touch response) at 120 hpf as described in Truong et al. (2014).

Statistical analysis. For each concentration, n=32 across
two 96-well plates (16 animals per plate per treatment group).
The 0 ng=mL TCDD concentration served as the control. Due to
the low category counts, the data were analyzed using a Fisher’s
exact test as it does not make distributional assumptions. To con-
trol for the family-wise error rate, we applied the Bonferroni cor-
rection for multiple comparisons (p<0:01).

120-hpf larval photomotor response (LPR) assay. Zebrafish
embryos were exposed to 0, 0.0625, or 0:125 ng=mL of TCDD
at the shield stage (∼ 6 hpf), as described in the “Waterborne
exposure” section of the Methods. At 120 hpf, only embryos
that were phenotypically normal underwent a larval photomotor
response assay. The larval photomotor response was conducted
using the ViewPoint Zebrabox system (ViewPoint Behavior
Technology) as described in Knecht et al. (2017). Briefly, the
LPR assay comprises 3-min alternating light and dark periods,
for a total of four light:dark transitions. The first transition is
counted as an acclimation period. The level was set at 525 LUX
for the light period and integration time set to 6 s. Larval move-
ment was recorded over each light:dark cycle, and average of
total distance traveled per integration time point and area under
the curve calculated.

Statistical analysis. For each concentration, n=32 across two
96-well plates (16 animals per plate). The overall area under the
curve for the final three light:dark transitions was computed for
animals exposed to 0, 0.0625, or 0:125 ng=mL, and was compared
with the 0 ng=mL TCDD concentration using a Kolmogorov-
Smirnov test (p≤ 0:01).

PART II: slincR Contributions to TCDD Toxicity
TCDD RNA-seq sample preparation and analysis. RNA was
extracted from control and slincR morphants exposed to 0.1%
DMSO or 1 ng=mL TCDD at 48 hpf with 4 replicates per treat-
ment group, as described above. RNA integrity was confirmed
(RIN score>8)with anAgilent Bioanalyzer 2,100. Total RNA sam-
ples were sent to the Oregon State University Center for Genome
Research and Biocomputing Core facilities for library preparation
and sequencing. In addition, mRNAwas poly A selected, and libra-
ries were prepared with the PrepX™mRNA and Illumina sequenc-
ing workflow (Wafergen Biosystems). Paired-end sequencing
(150 bp) was conducted with an Illumina HiSeq® 3000 sequencer.
Processing of next-generation sequencing (NGS) followed a pipe-
line for gene-level analysis (Anders et al. 2013). Briefly, reads were
initially evaluated by FastQC (version 0.11.3) to detect major
sequencing problems and quality control trimmedwith Skewer (ver-
sion 0.1.127) to remove ends of reads with low mean Phred quality
score using options: –mode pe –end-quality 30 –mean-
quality 25 –format auto –threads 9 (Andrews 2015;
Jiang et al. 2014). RNA-seq alignment and quantification pro-
ceeded with Bowtie2 (version 2.2.3) being used to build TopHat
genome index files from the Genome Reference Consortium
Zebrafish Build 10 (GRCz10) genome downloaded from
Ensembl (release 89), ftp://ftp.ensembl.org/pub/release-89/fasta/
danio_rerio/dna/Danio_rerio.GRCz10.dna.toplevel.fa.gz (Kim
et al. 2013; Langmead et al. 2009; Langmead and Salzberg
2012). Trimmed reads were aligned with TopHat (version 2.1.1)
using the following options optimized for trimmed, paired-end,
stranded data: –num-threads 9 –library-type fr-
secondstrand –no-discordant –no-mixed –mate-
inner-dist 20 –mate-std-dev 180 –min-anchor-
length 5 –min-intron-length 10 –max-intron-

length 400,000. Samtools (version 1.4) was used to assess
the percent of paired aligned reads and to sort aligned reads (bi-
nary alignment files, BAM) by name using the “flagstat” and
“sort -n -@9” commands, respectively (Li et al. 2009). Gene
counts were estimated using the htseq-count script from HTSeq
(version 0.6.0) with the GRCz10 Ensembl (release 89) GTF anno-
tation, ftp://ftp.ensembl.org/pub/release-89/gtf/danio_rerio/Danio_
rerio.GRCz10.89.gtf.gz, and options: –format=bam –idattr=
gene_id –stranded=yes –mode=intersection-
nonempty –order=name (Anders et al. 2015).

Statistical analysis. Each biological sample consisted of RNA
from 20 pooled 48-hpf zebrafish with 4 biological replicates per
condition (n=4). Differential expression analysis followed the
maintained Bioconductor workflow developed by Y Chen et al.
(2016), http://bioconductor.org/packages/release/workflows/vignettes/
RnaSeqGeneEdgeRQL/inst/doc/edgeRQL.html, and was conducted
using R (version 3.5.1; R Development Core Team), RStudio
(version 1.1.453; RStudio Team), and a custom R script provided
as a supplementary file (Differential_expression_custom_script.R;
Supplemental Material, S2. Differential expression customR script;
(Huber et al. 2015). The Bioconductor package edgeR (version
3.22.3) was used to normalize counts and identify differentially
expressed genes (Lun et al. 2016; McCarthy et al. 2012; Robinson
and Smyth 2007, 2008; Robinson et al. 2010; Robinson and
Oshlack 2010). Briefly, genes were filtered to exclude those with
low counts across libraries, only keeping genes expressed in a mini-
mumof four sampleswith average counts permillion reads per sam-
ple above 0.82, which corresponds to a minimum read count of
10–20 (Y Chen et al. 2016; Lun et al. 2016). Filtered genes were
then normalized across samples using the trimmed mean of M val-
ues (TMM)method tominimize composition bias between libraries
(Robinson and Oshlack 2010). Differential expression of control vs.
TCDD-exposed control or slincR morphants was determined with
functions from edgeR, which uses the negative binominal general-
ized linear model extended by quasi-likelihood methods to fit the
count data, the Cox-Reid profile-adjusted likelihood method to cal-
culate dispersions, and empirical Bayes quasi-likelihood F-tests to
calculate differential expression (Chen et al. 2014; Lun et al. 2016).
The “robust =TRUE” option was used to protect the empirical
Bayes estimates against the possibility of outlier genes with wide-
ranging individual dispersions. Genes with a Benjamini-Hochberg
(BH) adjusted p≤ 0:05 were considered significantly differentially
expressed. The biomaRt package (version 2.36.1) was used to con-
nect Ensembl gene ID information to Ensembl BioMart annotation
information (e.g., gene symbols, biotypes, human orthologs, etc.),
and heatmaps were created using the R package ComplexHeatmap
(version 1.18.1; Durinck et al. 2005; Durinck et al. 2009; Gu et al.
2016). Heatmap clustering was derived from TMM-normalized,
regular log-transformed gene values scaled by z-score (Love et al.
2016). To understand the functional consequences of TCDD expo-
sure and slincR knockdown, we performed biological process net-
work enrichment analysis and GO term enrichment on the
significant differentially expressed human orthologs using GeneGo
MetaCore (version 6.31 build 68930) from Clarivate Analytics as
described inHaggard et al. (2016). Only enriched biological process
networks and GO terms with a false discovery rate (FDR) adjusted
p≤ 0:05 were considered significant. Sequencing data and process-
ing details have been deposited in the NCBI Gene Expression
Omnibus (GSE106131).

Cartilage staining and lower jaw cartilage morphometrics.
Zebrafish embryos were microinjected with control and slincR
MOs and exposed to 0.1%DMSOor 1 ng=mLTCDD, as described
above. At 72 hpf, larvae were euthanized by overdose of buffered
tricaine methanesulfonate (MS-222, 200–300 mg=L) by pro-
longed immersion and monitored under a dissecting microscope
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until the hearts stopped beating (approximately 15 min). The ani-
mals were fixed in 4% paraformaldehyde overnight at 4°C.
Pigmentation was removed by incubating fixed larval samples
for 1 h in a mixture of 3% H2O2=1%KOH. The cartilage was
stained with 0.4% Alcian Blue 8GX (Sigma-Aldrich) in 70%
ethanol and 80mM MgCl2 as described in Walker and Kimmel
(2007). Briefly, fixed animals were washed with PBS and dehy-
drated with an ethanol gradient. After removal of ethanol, the car-
tilage stain was added to larvae and rocked overnight at room
temperature. The samples were washed with water and cleared
using glycerol and KOH solutions. Larvae were imaged in 0.8%
low-melt agarose at room temperature using a Keyence BZ-X700
at 10X with 0.45 aperture and processed with the BZ-X Analyzer
software. Morphometric analysis (n=9–10 embryos) of ventral
larval pharyngeal cartilages was performed using ImageJ v1.51j8
and two customized macros (Customized_Set_Origin_Tool.ijm;
Customized_Click_Coordinates_Tool.ijm; Supplemental Material,
S3. Customized Set Origin Tool and S4. Customized Click
Coordinates Tool), as described inXiong et al. (2008).

Statistical analysis. Biological replicates consisted of 9–10
individual 72-hpf zebrafish measurements per treatment group.
Statistical significance (n=9 or 10, p<0:05) was determined in
RStudio (version 1.1.453)with the R (version 3.5.1; RDevelopment
Core Team) packages multcomp (version 1.4-8) and sandwich (ver-
sion 2.4-0) using a modified one-way ANOVA and Tukey multiple
comparison of means that is robust in regard to equal variance, sam-
ple sizes, and distribution, anddatawere graphed using ggplot2 (ver-
sion 3.0.0), and a custom R script (Cartilage_morphometrics.R;
Supplemental Material, S5. Cartilage morphometrics R script;
Herberich et al. 2010; Hothorn et al. 2008; Wickham 2016;
Zeileis 2004, 2006).

Hemorrhage screen. Zebrafish embryos were microinjected
with control and slincR MOs and exposed to 0.1% DMSO or
1 ng=mL TCDD, as described above. At 48 hpf, the embryos
were evaluated under a dissecting microscope for the presence or
absence of hemorrhaging.

Statistical analysis. The DMSO and TCDD samples consisted
of 3 or 5 biological replicates, respectively. Each biological repli-
cate contained 10–12 individual 48-hpf zebrafish. Results were
statistically analyzed with R (version 3.4.1; R Development Core
Team) in the RStudio IDE (version 1.0.143; RStudio Team). The

data were initially assessed for equal variance and normality using
Levene’s test and the Shapiro-Wilk test, respectively. Statistical
significance (n=3 or 5, p<0:001) was determined using the Type
III one-way ANOVA for unbalanced experimental designs from
the car package (version 3.0-0) with a Tukey post hoc test from the
multcomp package (version 1.4-8), and the data were graphed
using ggplot2 (version 3.0.0; Fox and Weisberg 2011; Hothorn
et al. 2008; Wickham 2016). The experiments were independently
repeated aminimum of two times.

PART III: Investigation of PAHs That Increase slincR
Expression
16 PAH RNA-seq sample preparation and analysis. The zebra-
fish embryos were exposed as described in Geier et al. (2018).
Briefly, the chorions were enzymatically removed from 4-hpf
zebrafish using a custom automated dechorionator. At 6 hpf, the
embryoswere placed into a 96-well round-bottom plate using auto-
mated embryo placement robots (Mandrell et al. 2012). Each well
contained a single embryo and 100 lL embryo media. The 16
PAHs (Table 1) were analytical grade standards obtained from
AccuStandard, Chiron Chemicals, and Santa Cruz Biotechnology.
To make stock solutions, the 16 PAHs were dissolved in 100%
DMSO. See Geier et al. (2018) for detailed stock information. A
Hewlett Packard D300e chemical dispenser was used to expose the
embryos in 96-well plates. To achieve optimal solution uniformity,
the plates were sealed with Parafilm®, covered in foil, and shaken
overnight at 235 rpm in an orbital shaker at 28°C (Truong et al.
2016). The exposure plates were then transferred to an incubator at
28°C for the duration of the exposure. The EC80’s of the 16 PAHs
were experimentally determined by the individual compound
response. The 16 PAHs were first assessed at a wide range of con-
centrations (50, 35.6, 11.2, 5, and 1 lM, n=32). Of the 16 PAHs,
9 did not result in morphological malformations and were subse-
quently tested at only 50 lM. The remaining 7 were tested using a
definitive concentration range (11 concentrations, n=24) deter-
mined between the highest concentration to not elicit any mor-
phological effect and the lowest concentration that resulted in
near 100%morbidity or mortality. The final EC80 concentrations
tested are listed behind each chemical name in Table 1.
Sigmoidal curves are often fit to concentration–response data.

Table 1. RNA sequencing gene expression results from zebrafish developmentally exposed to 16 PAHs from the shield stage to 48-hpf.

Treatment
cyp1a slincR sox9b

log2FC FDR log2FC FDR log2FC FDR

Retene (12:2 lM) 7.692 6:94× 10−16 3.006 2:50× 10−10 0.071 0.848
Benzo[j]fluoranthene (14:9 lM) 7.761 4:96× 10−16 3.922 9:65× 10−14 0.095 0.678
Benzo[k]fluoranthenea (1:9 lM) 7.913 2:91× 10−16 3.975 6:07× 10−14 0.168 0.792
Dibenzo[a,h]pyrenea (5 lM) 6.373 1:07× 10−13 2.936 1:09× 10−9 0.104 0.610
Dibenzo[a,i]pyrene (5 lM) 6.478 7:58× 10−14 2.785 5:17× 10−9 −0:191 0.811
Benzo[b]fluoranthenea (50 lM) 6.019 1:83× 10−13 2.139 4:25× 10−6 0.171 0.615
Fluoranthenea (50 lM) 3.142 1:40× 10−6 0.343 0.720 0.001 0.998
Phenanthrenea (50 lM) 2.093 0.0026 0.009 1.00 0.011 1.00
Acenapthenea (50 lM) 0.844 0.139 0.459 0.407 0.113 0.499
4H-cyclopenta[def]phenanthren-4-one (16:2 lM) 1.618 0.176 0.019 0.990 0.347 0.0664
Carbazole (50 lM) 2.126 0.0549 0.491 0.716 0.211 0.384
3-nitrofluoranthene (1:9 lM) 1.778 0.712 0.319 0.954 0.186 0.859
1,5-dimethylnaphthalene (50 lM) 0.806 1.00 0.401 1.00 0.003 1.00
9-methylanthracene (50 lM) 2.647 0.0091 0.711 0.411 0.140 0.511
2-methylnaphthalene (50 lM) 0.587 1.00 0.139 1.00 0.038 1.00
Anthracenea (50 lM) 2.467 0.366 1.083 0.415 0.137 0.632

Note: These data are part of an unpublished RNA sequencing dataset that was generated by Dr. M. Geier from the R. Tanguay laboratory. Concentrations were based on the EC80 and
were experientially determined by the individual compound response. For the PAHs that did not elicit a morphological effect, the maximum soluble concentration tested (50 lM for
most) was used. The Bioconductor package edgeR (statistical methodology based on the negative binomial distribution) was used to calculate the log2FC and identify the significant
differentially expressed genes (n=4, BH-adjusted p≤ 0:05), when compared to the vehicle control (0.1% DMSO). BH, Benjamini-Hochberg; DMSO, dimethyl sulfoxide;
FDR,BH-adjusted p-value; hpf, hours post fertilization; log2FC, log 2ðfold changeÞ; PAH, polycyclic aromatic hydrocarbon.
aDenotes a chemical that is one of the U.S. Environmental Protection Agency’s 16 priority PAHs.
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Here, we used a Hill Model (specifically a four-parameter log-
logistic function) that was fit to the mean percentage of affected
individuals for any morphological end point measured. All
curves were fit with the drm() function from the drc package in
R. This function uses least squares estimation to fit the curves.
The Hill model was applied to estimate a concentration that
caused 80% effects (EC80). The computed EC80 was confirmed
prior to conducting the RNA-seq. The data for the morphologi-
cal effects of the 16 PAHs are reported in Geier et al. (2018).

Total RNA was isolated and quantified from pooled groups of
eight 48-hpf zebrafish as described in the “RNA Extraction” sec-
tion of the “Methods” section. Each treatment group contained 4
biological replicates. Total RNA samples were sent to Oregon
State University Center for Genome Research and Biocomputing
Core facilities for library preparation and sequencing. The 100-bp
single-end read libraries were prepared using the Wafergen
Robotic PolyA Enrichment Library Prep and Wafergen Robotic
Stranded RNA Library Prep Kits. The samples were randomized
across 6 lanes and sequenced using the IlluminaHiSeq® 3000.

Statistical analysis. The reads were processed and analyzed
as described in the “TCDD RNA-seq Sample Preparation and
Analysis section” of the “Methods” section. Each biological sam-
ple consisted of RNA from 8 pooled 48-hpf zebrafish with 4 bio-
logical replicates per condition (n=4, BH-adjusted p≤ 0:05).

PART IV: Identification of Potential slincRMouse and
Human Orthologs
Mouse TCDD-exposed dataset. All procedures were approved by
the University of Wisconsin Animal Care and Use Committee
and conducted in accordance with the National Institutes of
Health (NIH) Guide for Care and Use of Laboratory Animals.
Pregnant C57BL/6J mice were treated with 5 lg=kg TCDD on
E13.5 following previously established protocols (Lin et al.
2003). At E16.75, dams were euthanized via CO2 asphyxiation,
and the urogenital sinuses (UGS) were dissected from fetuses as
previously described (Branam et al. 2013). Each UGS was imme-
diately placed into a 1:5-mL microfuge tube containing 300 lL
of 1% trypsin (Difco, 215240) in PBS and incubated on ice for 30
min. Collagenase (Sigma C9891) was added to a final concentra-
tion of 1 mg=mL, followed by an additional 30–45 min incuba-
tion on ice. A dissecting microscope was used to mechanically
separate UGS from fetal urogenital epitheliums (UGEs) after
which the bladder and urethral epithelium were removed, leaving
only UGE. Each treatment consisted of 3–4 biological replicates
consisting of either 5 or 6 individual UGEs that were pooled for
RNA isolation. Total RNA was purified from each UGE using
the RNeasy® system (Qiagen) and analyzed using the Agilent
Bioanalyzer 2100 and an Agilent RNA 6000 Pico Kit (Agilent
Technologies). The samples were sequenced at the University of
Wisconsin Madison Biotechnology Center, using an Illumina
HiSeq® 2500. Processing of NGS was performed as described
above in the “RNA sequencing analysis”’ section with the following
modifications: The genome index files were generated with the
GRCm38 (Ensembl Release 87) genome file, ftp://ftp.ensembl.org/
pub/release-87/fasta/mus_musculus/dna/Mus_musculus.GRCm38.
dna.toplevel.fa.gz; reads were trimmed using the FASTX-Toolkit
(version 0.0.13; http://hannonlab.cshl.edu/fastx_toolkit/index.html)
with options: fastx_trimmer -t 50 -Q 33; TopHat2 options
were –library-type fr-unstranded –no-mixed –
num-threads 10; and gene counts were determined using the
htseq-count script from HTSeq with the Ensembl Release 87
GTF annotation, ftp://ftp.ensembl.org/pub/release-87/gtf/mus_
musculus/Mus_musculus.GRCm38.87.gtf.gz and options: -f
bam -i gene_id -m intersection-nonempty -s no.

Statistical analysis. Each biological sample consisted of
RNA from 5-6 pooled UGE tissue with 3–4 biological replicates
per condition. The differential expression analysis was performed
as described above in the RNA sequencing analysis section
(n=3–4, BH-adjusted p≤ 0:05).

Identification of potential mammalian slincR orthologs. The
slncky Evolution Browser contains alignments and evolutionary
metrics of lncRNAs conserved in the mouse (mm10, GRCm38)
and human (hg38, GRCh38) genomes and was used to identify
the potential human ortholog of slincR (Chen et al. 2016). We
performed pairwise sequence alignments using the online global
alignment tool Needle (EMBOSS) using the default settings
(https://www.ebi.ac.uk/Tools/psa/). To compare tissue-specific
expression, we downloaded RNA sequencing data from the
National Center for Biotechnology Information BioProject data-
base for the mouse, 2610035D17Rik (BioProject: PRJNA66167;
Gene ID: 72386), and human, LINC00673 (BioProject PRJEB4337;
Gene ID: 100499467), orthologs of slincR, as well as for sox9
(BioProject: PRJNA66167; Gene ID: 100499467) and SOX9
(BioProject PRJEB4337; Gene ID: 6662). The data were graphed
using the R package ggplot2 (version 3.0.0; Fagerberg et al. 2014;
Wickham 2016; Yue et al. 2014).

Results

PART I: Transcriptional Regulation by slincR
Use of qRT-PCR CHART to evaluate slincR enrichment at the
sox9b locus. The slincR probe was shown to be capable of
enriching the slincR transcript (Figure 1A) and was shown to be
specific as demonstrated by the absence of the slincR transcript
band in the sense probe samples of a representative 1.2% agarose
gel (Figure 1B). We tested multiple regions of the sox9b pro-
moter, and only the 50 UTR of the promoter was consistently
enriched in all three biological replicates in both the DMSO- and
TCDD-treated samples (Figure 1C). The 5' UTR is also present
in the sox9b transcript, so we tested the same region in CHART-
isolated RNA; however, the RNA samples did not result in de-
tectable amplification (no measurable enrichment).

To determine if sox9b expression levels have an effect on the
expression of slincR, we microinjected single-cell zebrafish embryos
with a splice-blocking morpholino targeting sox9b (sox9b-MO) or
with a control morpholino (Con-MO) and collected RNA at 48 hpf.
We used qRT-PCR tomeasure the relative expression levels of sox9b
and slincR. The sox9b-MO reduced the levels of sox9b transcripts by
71% and resulted in a significant increase in slincR expression when
comparedwith controlmorphants (Figure 1D).

To determine if a concentration–response relationship exists
between the gene expression of sox9b and slincR in response to
TCDD exposure, we developmentally exposed embryonic zebra-
fish to 0, 0.0625, 0.125, 0.25, 0.5, or 1:0 ng=mL of TCDD and
measured the relative expression levels of sox9b and slincR in
48-hpf wild-type zebrafish.We also measured cyp1a expression as
a marker of AHR activation. The expression levels of slincR and
cyp1a were significantly elevated beginning at the 0:0625 ng=mL
TCDD concentration and increased with increasing concentrations
of TCDD, in comparison with 0 ng=mL TCDD (i.e., 0.1% DMSO;
Figure 2A). The expression levels of sox9b were significantly
decreased in the 0.5 and 1:0 ng=mLTCDD concentrations, in com-
parisonwith 0 ng=mLTCDD (Figure 2A).

In addition to gene expression changes, we also examined the
embryos for developmental toxicity when exposed to the six con-
centrations of TCDD (0–1 ng=mL) using a 17 end point morphol-
ogy screen at 120 hpf, as described in Truong et al. (2014).
Developmental exposures of 0.25, 0.5, or 1:0 ng=mL TCDD
induced significant malformations across multiple end points,
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including edemas (of the yolk and pericardium) and jaw, snout, eye,
and pectoral fin malformations (Figure 2B, C). Developmental expo-
sures of 0.0625 or 0:125 ng=mL did not induce a significant level of
physicalmalformations (Figure 2B, C); however, both concentrations
resulted in a significant hyperactive phenotype in a larval photomotor
response (LPR) assay in comparison with 0 ng=mL TCDD (Figure
2D). Larval zebrafish exhibiting any visible malformation were nec-
essarily excluded, which prevented the analysis of the 0.25, 0.5, or
1:0 ng=mLTCDDconcentrations in the LPR assay.

PART II: slincR Contributions to TCDD Toxicity
Unbiased transcriptome profiling in TCDD-exposed zebrafish
morphants. To gain insight into the functional role of slincR in
TCDD-induced toxicity, we performed whole embryo transcrip-
tome profiling on 48-hpf slincR and control morphants exposed to

0.1% DMSO or 1 ng=mL TCDD. In control morphants exposed to
TCDD, we identified 132 genes that were differentially expressed
when compared with vehicle control (n=4, BH-adjusted p≤ 0:05,
Figure 3A and Excel Table S1). In slincR morphants exposed to
TCDD, we identified 80 differentially expressed genes when com-
pared with vehicle control (n=4, BH-adjusted p≤ 0:05, Figure 3A
and Excel Table S2). Over 25% (22) of these genes were unique to
slincRmorphants, whereas 72.5% (58) overlapped with the control
morphant differentially expressed gene list (Figure 3A). In the
slincR and control morphant differentially expressed gene lists,
90% (72) and 81% (107) of the genes had an increase in expression
in response to TCDD exposure, respectively. As expected, the
sox9b transcript was only significantly decreased in the control
morphant (TCDD-DMSO) dataset (Excel Table S1 and S2).

To visualize the expression profile, we performed bidirec-
tional hierarchical clustering of the differentially expressed genes
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Figure 1. Use of qRT-PCR CHART to determine slincR enrichment at the sox9b promoter in 48-hpf whole embryos treated with 0.1% DMSO or 1 ng=mL TCDD.
(A) Enrichment of slincR RNA by CHART (slincR probe) and a nonspecific primer set (b-actin). Each condition had 3 biological replicates, where 1 replicate con-
sisted of approximately 500 48-hpf zebrafish. The qRT-PCR data were first normalized to 1% input control, such that 6.644 cycles (i.e., dilution factor log2ð100Þ)
was subtracted from the cycle threshold value (CT; i.e., number of PCR replication cycles required for the sample signal to exceed background levels) of the diluted
input and used to calculate the DCT for the two probe sets (DCT=CT½probe�−CT½1% input-6:644�). The RNA yield was calculated using the following equation
(2−DDCT × 100%). We assigned samples that did not amplify (no enrichment) a CT value of 40. (B) Representative slincR qRT-PCR CHART products from panel
(A) run on a 1.2% agarose gel. (C) qRT-PCR CHART enrichment of slincRRNA at multiple positions (−2042 bp, −963 bp, and −502 bp) downstream of the sox9b
transcription start site and 5' untranslated region. Each condition had 3 biological replicates (n=3), where 1 replicate consisted of approximately 500 48-hpf zebra-
fish. Expression values were normalized to 1% input control as described for panel (A), except for DNA fold enrichment.We next adjusted relative to the sense probe
(DDCT=DCT½slincR-probe�−DCT½sense-probe�), and then fold enrichment was calculated (2−DDCT). We assigned samples that did not amplify (no enrichment) a
CT value of 40. (D) qRT-PCR relative expression of slincR and sox9bmRNA in 48-hpf whole embryo control and sox9bmorphants. Expression values were ana-
lyzed with the 2−DDCT method and normalized to b-actin, whereas the control morphants served as the calibrator. Each sample represents a pool of 20 embryos, each
condition had a minimum of four biological replicates (n=4), and the data were analyzed using a one-way ANOVAwith a Tukey post hoc test (p<0:01 in compari-
son with controlmorphant = � �). Error bars (A, C, and D) indicate standard error of the mean. Note: CHART, capture hybridization analysis of RNA targets;
DMSO, dimethyl sulfoxide; hpf, hours post fertilization; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; UTR, untranslated region.
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Figure 2. Analysis of the concentration–response effects of developmental exposure (1-h exposure at 6 hpf) to TCDD on gene expression at 48 hpf and mor-
phological malformations at 120 hpf. (A) qRT-PCR relative expression of cyp1a, slincR, and sox9b transcripts in 48-hpf wild-type embryos exposed to 0,
0.625, 0.125, 0.25, 0.5, or 1:0 ng=mL TCDD. For all assays, 0.1% DMSO served as the vehicle control and is listed as 0 ng=mL TCDD. Expression values
were analyzed with the 2−DDCT method and normalized to b-actin using the 0 ng=mL TCDD concentration as the calibrator. Each experimental unit represents
a pool of 20 embryos, and each treatment group included four biological replicates (n=4). The data were log2-transformed and analyzed using a one-way
ANOVA with a Dunnett post hoc test (p<0:001 in comparison with 0 ng=mLTCDD= � ��). All error bars indicate standard error of the mean. (B)
Evaluation of 17 physical malformations at 120-hpf on wild-type zebrafish exposed to six concentrations of TCDD (0–1 ng=mL) across two 96-well plates.
Nonsignificant malformations (otic vesicle, somite, circulation, pigmentation, swim bladder, notochord distortion, and alterations in touch response) are
excluded. The horizontal axis displays the TCDD concentrations tested, and the malformation examined is listed above each box. The incidence across all rep-
licates is plotted as stacked points. For each malformation, the stacked points exceeding the binomial significance threshold are represented in light gray (top
stack). The data were analyzed using a Fisher’s exact test with a Bonferroni correction for multiple comparisons (n=32, p<0:01). (C) Representative lateral
images of 120-hpf zebrafish for each concentration of TCDD tested. The bar in top left corner indicates 100 lM. (D) Larval photomotor response (LPR) in
120-hpf wild-type embryos developmentally exposed to 0, 0.0625, or 0:125 ng=mL TCDD equally divided across two 96-well plates using the ViewPoint
ZebraBox larvae screening system. For each concentration of TCDD, the overall area under the curve was analyzed for the last 3 light:dark cycles in com-
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Conc, concentration; cycle, 3-minute light:dark transitions; DMSO, dimethyl sulfoxide; hpf, hours post fertilization; hypo, hypoactive photomotor response;
hyper, hyperactive photomotor response; MO24,mortalitymeasured at 24 hpf; MORT,mortalitymeasured at 120 hpf; PE, pericardial edema; PFIN, pec fin;
TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; YSE, yolk sac edema.
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with the top 30 largest log2ðfold changesÞ in control (Figure 3B)
and slincR (Figure 3C) morphants. TCDD exposure produced a
robust transcriptional profile as indicated by the two primary tran-
script clusters that separate based on treatment status (blue and
red bars at the top of the heatmaps).

To relate the observed transcriptional changes to human
health and understand the functional consequences of TCDD ex-
posure and slincR knockdown, we identified orthologous human

Ensembl genes and performed biological process network enrich-
ment and GO term enrichment analyses on the converted gene
lists using MetaCore GeneGo software (FDR-adjusted p≤ 0:05)
as described in Haggard et al. (2016). The MetaCore process net-
work enrichment for the slincR morphant dataset was limited
because of its small size but included four networks involved in
immune response, regulation of epithelial-to-mesenchymal tran-
sition, ESR1-nuclear pathway, and reproduction, that were also
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between 48-hpf slincR and control morphants treated developmentally (1 h exposure at 6 hpf) with 0.1%DMSO or 1 ng=ml TCDD. The Bioconductor package edgeR
(statistical methodology based on the negative binomial distribution) was used to identify the significant differentially expressed genes in TCDD-treated morphants
(n=4, BH-adjusted p≤ 0:05), in comparison with the vehicle control (0.1%DMSO). (A) Venn diagram of up- and down regulated genes from control and slincRmor-
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significantly enriched in the control morphant data (Table 2 and
3). We observed multiple enriched process networks involved in
cartilage, bone, and blood vessel development in the control mor-
phant dataset. The GO term enrichment analyses resulted in about
half of GO-enriched terms overlapping between Con-MO and
slincR-MO datasets (Excel Table S3 and S4). We noticed that
several cartilage and skeletal developmental processes were
uniquely enriched in the control morphant data (Table 4),
whereas angiogenesis and vasculature developmental processes
were uniquely enriched in the slincR dataset (Table 5).

Effect of slincR knockdown on jaw development after treat-
ment with TCDD. To investigate the phenotypic impact of slincR
expression on TCDD-induced jaw malformations, we develop-
mentally exposed slincR and control morphants to 0.1% DMSO
or 1 ng=mL TCDD for 1 h at the shield stage (∼ 6 hpf) and eval-
uated the cartilage of 72-hpf zebrafish larvae. Both the control
and slincR morphants exposed to TCDD had a 100% incidence of
cartilage malformations at 72 hpf. The cartilage of DMSO-
exposed slincR and control morphants was indistinguishable;
however, slincR morphants exposed to TCDD had a significant
difference in the relative position of landmark structures in com-
parison with TCDD-exposed control morphants (n=9 or 10,
p<0:05; Figure 4A, B). Unexpectedly, knocking down slincR
expression in TCDD-exposed (Ahr2-activated) zebrafish embryos
resulted in an abnormal junction between hyosymplectic and
ceratohyal cartilages in comparison with control morphants
exposed to TCDD (Figure 4B, region of interest indicated by
arrows in trace column).

Effect of slincR knockdown on TCDD-induced hemorrhag-
ing. To elucidate the phenotypic impact of slincR expression on
TCDD-induced hemorrhaging, we developmentally exposed
slincR and control morphants to 0.1% DMSO (vehicle control) or
1 ng=mL TCDD for 1 h at the shield stage (∼ 6 hpf). At 48 hpf,

the embryos were evaluated for the presence or absence of hem-
orrhaging as shown in (Figure 5A, B; blood pooling indicated by
arrows). In control and slincR morphants, exposure to DMSO did
not result in hemorrhaging (Figure 5A). In both the control and
slincR morphants, exposure to TCDD resulted in a significant
increase in the percent incidence of zebrafish displaying a hemor-
rhaging phenotype in comparison with their respective vehicle
controls (n=3 or 5, p<0:001; Figure 5A); however, the slincR
morphants exposed to TCDD had a significant decrease in the
percentage of animals with the hemorrhaging phenotype in com-
parison with control morphants exposed to TCDD (Figure 5A).

PART III: Investigation of PAHs That Increase slincR
Expression
slincR is up-regulated by multiple environmentally relevant
PAHs. To screen for environmentally relevant PAHs that activate
the AHR signaling pathway and up-regulate slincR expression,
we mined an unpublished 16 PAH RNA-seq dataset from 48-hpf
whole zebrafish embryos generated by Dr. M. Geier from the
Tanguay lab. Of the 16 PAHs screened, six were associated with
a significant increase in cyp1a and slincR expression, of which
three were from the U.S. Environmental Protection Agency’s pri-
ority PAH list (Table 1). Three additional PAHs were associated
with a significant increase in cyp1a expression alone, of which
two were from the EPA’s priority PAH list. None of the 16 PAHs
were associated with a significant decrease in sox9b expression.

PART IV: Identification of Potential slincRMouse and
Human Orthologs
To identify the potential mouse ortholog of slincR, we mined an
unpublished RNA-seq dataset from male and female mouse
E16.75 urogenital epithelial tissue exposed to 5 lg=kg of TCDD,

Table 3. Significantly enriched MetaCore process networks from 48-hpf slincR-MO zebrafish exposed to 1 ng=mL TCDD for 1 hour at the shield stage, in
comparison with the vehicle control (0.1% DMSO).

Network name FDR Associated human gene

Immune response: Th17-derived cytokines 2:946× 10−2 JUN, CXCL12, MMP9
Development: EMT Regulation of epithelial-to-mesenchymal transition 2:946× 10−2 JUN, CDKN1B, TWIST1, CTGF, MMP9
Signal transduction: ESR1-nuclear pathway 2:946× 10−2 CYP1A1, JUN, NFATC4, CXCL12, CYP1B1
Reproduction: FSH-beta signaling pathway 2:946× 10−2 JUN, CDKN1B, FST, CTGF

Note: The Bioconductor package edgeR (statistical methodology based on the negative binomial distribution) was used to calculate the significant differentially expressed genes
(n=4, BH-adjusted p≤ 0:05), in comparison with the vehicle control (0.1% DMSO). The human orthologs of the gene list were then submitted to MetaCore to identify signifi-
cantly enriched process networks using a hypergeometric distribution, where the p-value is the probability that a gene set maps to a manually curated GeneGo Process Network
or is overrepresented in comparison with the background gene list. Enriched process networks were considered significant with an FDR≤ 0:05. BH, Benjamini-Hochberg;
DMSO, dimethyl sulfoxide; EMT, epithelial tomesenchyme transition; FDR, false discovery rate adjusted p-value; FSH-beta, follicle-stimulating hormone beta subunit; hpf, hours
post fertilization; slincR-MO, slincRmorphant; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Table 2. Significantly enriched MetaCore process networks from 48-hpf Con-MO zebrafish developmentally exposed to 1 ng=mL TCDD for 1 h at the shield
stage, compared to the vehicle control (0.1% DMSO).

Network name FDR Associated human gene

Development: Cartilage development 8:053× 10−3 BMP4, BMP6, COL12A1, SOX9, CTGF
Cell adhesion: Cell-matrix interactions 8:053× 10−3 COL12A1, THBS1, MMP9, VCAN, ITGA11, TNC, COL10A1
Immune response: Th17-derived cytokines 8:053× 10−3 CXCL12, IL17RC, MMP9, JUN
Development: Ossification and bone remodeling 8:053× 10−3 BMP4, BMP6, OSTN, FOXO1, COL10A1, POSTN
Signal Transduction: BMP and GDF signaling 8:053× 10−3 BMP4, BMP6, CDKN1B, GADD45B, SOX9
Development: EMT: Regulation of epithelial-to-mesenchymal transition 8:053× 10−3 BMP4, HMGA2, MMP9, JUN, CDKN1B, SOX9, CTGF
Proteolysis: ECM remodeling 8:053× 10−3 MMP9, TNC, COL10A1, CTGF
Signal Transduction: ESR1-nuclear pathway 9:733× 10−3 CYP1A1, CXCL12, BMP6, ADM, JUN, FOXO1, CYP1B1
Reproduction: FSH-beta signaling pathway 2:218× 10−2 BMP4, JUN, FOXO1, CDKN1B, CTGF
Development: Blood vessel morphogenesis 2:424× 10−2 EPAS1, CXCL12, BMP4, FOXO1, CTGF, ANGPT4

Note: The Bioconductor package edgeR (statistical methodology based on the negative binomial distribution) was used to calculate the significant differentially expressed genes
(n=4, BH-adjusted p≤ 0:05), in comparison with the vehicle control (0.1% DMSO). The human orthologs of the gene list were then submitted to MetaCore to identify signifi-
cantly enriched process networks using a hypergeometric distribution, where the p-value is the probability that a gene set maps to a manually curated GeneGo Process Network
or is overrepresented in comparison with the background gene list. Enriched process networks were considered significant with an FDR≤ 0:05. BH,Benjamini-Hochberg;
BMP, bone morphogenic protein; Con-MO, controlmorphant; DMSO, dimethyl sulfoxide; ECM, extracellularmatrix; EMT, epithelial tomesenchyme transition; FDR, false discovery
rate adjusted p-value; FSH-beta, follicle-stimulating hormone beta subunit; GDF, growth differentiation factor; hpf, hours post fertilization; slincR-MO, slincRmorphant; TCDD,
2,3,7,8-tetrachlorodibenzo-p-dioxin.

Environmental Health Perspectives 117002-10 126(11) November 2018



which was generated by the Richard Peterson lab from the
University ofWisconsin-Madison. In the zebrafish genome, slincR
is located adjacent and antisense to sox9b; therefore, we searched
for a lncRNA that was significantly increased in response to TCDD
and had a conserved genomic position and orientation relative to
Sox9 in the mouse genome. We identified a single lncRNA
(2610035D17Rik) that matched these criteria (Figure 6A, B). We
used the slncky Evolution Browser to search for the human ortho-
log of mouse 2610035D17Rik and identified LINC00673 (Figure
6C; Chen et al. 2016). A sequence comparison of the zebrafish
slincR sequence (466 bp) with the mouse (1802 bp) and human
(2275 bp) lncRNAs resulted in a 17.6% and 13.4% sequence iden-
tity, respectively. The mouse and human lncRNAs shared 43.1%
sequence identity. To determine if the mouse and human lncRNAs
have similar tissue-specific expression patterns in comparison with
slincR in zebrafish, we downloaded mouse and human RNA-seq
expression data from NCBI and graphed the expression of the
potential slincR orthologs and Sox9/SOX9 across multiple tissues
(Figure 6D, E). Concordant with slincR, expression of both
2610035D17Rik and LINC00673 was found in the brain and cen-
tral nervous system, and 2610035D17Rik expression was also
identified in the developing limb bud.

Discussion
The AHR is required for proper vertebrate development and
homeostasis; however, activation of the receptor by ubiquitous
environmental pollutants, such as PAHs, can lead to adverse
developmental and cognitive effects in humans and wildlife
(Carney et al. 2006; Schneider et al. 2014). Dysregulation of
the AHR signal transduction pathway is associated with multi-
ple diseases, including prostate and coronary artery disease
(Huang et al. 2015; Schneider et al. 2014; Vezina et al. 2009).
AHR dysregulation has also been implicated in many cancer
types and mediates a number of steps in tumor progression
(Murray et al. 2014; Opitz et al. 2011). Recent publications
suggest the AHR may play a role in maintaining the cancer
stemlike phenotype and may exert transcription-independent
functions to mediate resistance to treatment in adenocarcinoma
and nonsmall cell lung cancers, respectively (Yan et al. 2018;
Ye et al. 2018).

A better understanding of the molecular mechanisms that
lead to toxic outcomes will facilitate the necessary shift from
observations of apical end points (e.g., malformations, mortal-
ity) to predicting the potential of a chemical to alter or interfere
with biologically conserved pathways (Noyes et al. 2016). We

Table 4. Significantly enriched unique MetaCore GO processes related to skeletal and cartilage development from 48-hpf Con-MO zebrafish exposed to
1 ng=mL TCDD for 1 h at the shield stage, in comparison with the vehicle control (0.1% DMSO).

Biological process FDR Associated human gene

Ossification 7:152× 10−5 CYP24A1, BMP4, BMP6, MMP9, OSTN, VCAN, ITGA11, TNC, SOX9, COL10A1, CTGF
Cartilage development 2:601× 10−4 BMP4, BMP6, HMGA2, THBS1, SFRP2, SOX9, COL10A1, CTGF
Endochondral bone morphogenesis 1:968× 10−3 BMP4, BMP6, THBS1, SOX9, COL10A1
Osteoblast differentiation 4:093× 10−3 CYP24A1, BMP4, BMP6, VCAN, ITGA11, TNC
Bone development 5:122× 10−3 BMP4, BMP6, THBS1, PAPPA2, SFRP2, SOX9, COL10A1
Regulation of chondrocyte differentiation 5:710× 10−3 BMP4, BMP6, SOX9, CTGF
Chondrocyte differentiation 1:142× 10−2 BMP4, HMGA2, SFRP2, SOX9
Regulation of cartilage development 1:177× 10−2 BMP4, BMP6, SOX9, CTGF
Positive regulation of osteoblast differentiation 1:271× 10−2 IL6R, BMP4, BMP6, SFRP2
Regulation of osteoblast differentiation 1:324× 10−2 IL6R, BMP4, BMP6, OSTN, SFRP2
Regulation of bone mineralization 1:356× 10−2 BMP4, BMP6, OSTN, SOX9
Odontogenesis of dentin-containing tooth 1:356× 10−2 BMP4, ADM, FOXO1, TNC
Positive regulation of cartilage development 1:567× 10−2 BMP4, BMP6, SOX9
Regulation of biomineral tissue development 1:578× 10−2 BMP4, BMP6, OSTN, SOX9
Regulation of ossification 1:793× 10−2 IL6R, BMP4, BMP6, OSTN, SFRP2, SOX9
Chondrocyte proliferation 1:793× 10−2 HMGA2, CTGF
Endochondral ossification 2:003× 10−2 BMP4, BMP6, COL10A1
Replacement ossification 2:003× 10−2 BMP4, BMP6, COL10A1
Positive regulation of ossification 2:891× 10−2 IL6R, BMP4, BMP6, SFRP2
Odontogenesis 2:954× 10−2 BMP4, ADM, FOXO1, TNC
Negative regulation of chondrocyte differentiation 4:076× 10−2 BMP4, SOX9

Note: The Bioconductor package edgeR (statistical methodology based on the negative binomial distribution) was used to calculate the significant differentially expressed genes
(n=4, BH-adjusted p≤ 0:05), in comparison with the vehicle control (0.1% DMSO). The human orthologs of the gene list were then submitted to MetaCore to identify significant bio-
logical processes using a hypergeometric distribution, where the p-value is the probability that a gene set maps to a manually curated GO process or is overrepresented in comparison
with the background gene list. Enriched GO processes were considered significant with an FDR≤ 0:05. BH,Benjamini-Hochberg; Con-MO, control morphant; DMSO, dimethyl sulfoxide;
FDR, false discovery rate adjusted p-value; GO, gene ontology; hpf, hours post fertilization; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.

Table 5. Significantly-enriched unique MetaCore GO processes related to angiogenesis and vasculature development from 48-hpf slincR-MO zebrafish
exposed to 1 ng=mL TCDD for 1 h at the shield stage, in comparison with the vehicle control (0.1% DMSO).

Biological process FDR Associated human gene

Regulation of blood vessel endothelial cell proliferation involved in sprouting angiogenesis 9:926× 10−3 HMOX1, THBS1
Negative regulation of vascular smooth muscle cell proliferation 1:297× 10−2 CDKN1B, HMOX1
Regulation of blood vessel endothelial cell migration 2:806× 10−2 HMOX1, NFE2L2, THBS1
Positive regulation of vascular smooth muscle cell proliferation 2:941× 10−2 JUN, MMP9
Positive regulation of blood coagulation 3:062× 10−2 NFE2L2, THBS1
Regulation of cell migration involved in sprouting angiogenesis 4:019× 10−2 HMOX1, THBS1
Branching involved in blood vessel morphogenesis 4:456× 10−2 NFATC4, CXCL12

Note: The Bioconductor package edgeR (statistical methodology based on the negative binomial distribution) was used to calculate the significant differentially expressed genes
(n=4, BH-adjusted p≤ 0:05), in comparison with the vehicle control (0.1% DMSO). The human orthologs of the gene list were then submitted to MetaCore to identify signifi-
cant biological processes using a hypergeometric distribution, where the p-value is the probability that a gene set maps to a manually curated GO process or is overrepresented
compared to the background gene list. Enriched GO processes were considered significant with an FDR≤ 0:05. BH, Benjamini-Hochberg; DMSO, dimethyl sulfoxide;
FDR, false discovery rate adjusted p-value; GO, gene ontology; hpf, hours post fertilization; slincR-MO, slincRmorphant; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin.
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previously used the zebrafish model to identify an ahr2-de-
pendent long noncoding RNA, slincR, whose expression
increased upon exposure to multiple Ahr2 ligands (Garcia
et al. 2017). We demonstrated that slincR was required for the
proper expression of sox9b during development and sox9b
repression in response to TCDD, a strong AHR ligand (Garcia
et al. 2017).

PART I: Transcriptional Regulation by slincR

Our data suggested that slincR acted in cis to repress sox9b
expression. Biochemical evidence has demonstrated that many
lncRNAs act as guides to chromatin-modifying enzymes and/or
platforms for protein complexes to regulate the three-dimensional
structure of the genome (Quinn and Chang 2016). In the present
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MO) were developmentally exposed to 0.1% DMSO or 1 ng=mL TCDD, and the cartilage was stained and measured at 72 hpf. (A) A morphometric system
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Environmental Health Perspectives 117002-12 126(11) November 2018



study, our data suggest that slincR regulates the expression of
sox9b via enrichment at the 5' UTR of the sox9b locus. Further
experiments are needed to distinguish whether slincR binds
directly to the DNA or indirectly via a protein/RNA intermedi-
ate. Surprisingly, the DMSO- and TCDD-exposed samples pro-
duced similar yields of slincR RNA and sox9b 5' UTR DNA
enrichment, despite the significant increase in slincR expression
induced upon exposure to TCDD. One possible explanation is
that the probe accessibility of the slincR transcript is altered
due to changes in the interacting molecular partners, which
may be condition specific. Additionally, knocking down sox9b
expression resulted in a significant increase in slincR expres-
sion. Our previous publication demonstrated that slincR was
required for the TCDD-induced repression of sox9b, had a sig-
nificant effect on the expression of known sox9b target genes,

and is expressed in tissues with sox9b essential functions (Garcia
et al. 2017). These data imply that sox9b and slincR may share
overlapping regulatory networks.

We detected a clear concentration–response relationship between
TCDD exposure and the gene expression of slincR and sox9b. We
also evaluated the morphology and behavior of exposed zebrafish in
order to correlate the gene expression with the observed toxicity.
Although the 0.25, 0.5, and 1:0 ng=mL concentrations of TCDD pro-
duced visible malformations in the eye, brain, jaw, snout, and other
tissues, only the two highest concentrations of TCDD tested (0.5 and
1:0 ng=mL) were able to both significantly increase slincR and sig-
nificantly decrease sox9b expression levels. In response to develop-
mental exposure to 1 ng=mL TCDD, sox9b expression is reduced in
the eye, brain, otic vesicle, jaw region, and snout region (Garcia et al.
2017). For the 0:25 ng=mL TCDD concentration, the discrepancy
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between the nonsignificant sox9b gene expression and significant
malformations in the cartilage area may be because the RNA was
isolated from a pool of whole embryos, which does not allow for
tissue-specific resolution.

PART II: slincR Contributions to TCDD Toxicity
SOX9 is required for proper vertebrate development and regulates
cell maintenance and specification during adulthood (Barrionuevo
et al. 2016; Furuyama et al. 2011; Jo et al. 2014). Overexpression
of SOX9 is associated with liver fibrosis and multiple cancer types
(Pritchett et al. 2011). In zebrafish, sox9b has a causal role in the

Ahr2 toxicity pathway. Antisense knockdown of sox9b is sufficient
to recapitulate the craniofacial cartilage malformations induced
by exposure to TCDD (Xiong et al. 2008). Developmental
TCDD-induced repression of sox9b decreases both the size and
number of chondrocytes to produce malformed craniofacial carti-
lages (Burns et al. 2015). In addition, ahr2-mutant zebrafish also
display craniofacial skeletal abnormalities, further supporting
the intersection of the AHR and SOX9 regulatory networks
(Garcia et al. 2018; Goodale et al. 2012). To understand the func-
tional role of slincR in TCDD-induced developmental toxicity,
we investigated global transcriptional responses and performed
functional enrichment analyses on control and slincR morphants
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Figure 6. Identification of the potential slincR mouse and human orthologs. We identified the potential mouse ortholog of slincR (2610035D17Rik) based on
(A) the conserved genomic location and orientation relative to Sox9 and (B) the significant increase in expression in TCDD-exposed mouse urogenital tissue
samples from embryonic day 16.5 (F, female and M,male). Each biological sample consisted of RNA from 5–6 pooled mouse urogenital tissue with 3–4 bio-
logical replicates per condition. Error bars indicate standard error of the mean. The image from (A) was downloaded from the Ensembl mouse genome
(GRCm38), and Sox9 and 2610035D17Rik are highlighted. (C) Downloaded and formatted image from the slncky Evolution Browser of the mouse
(2610035D17Rik) and human (LINC00673) conserved lncRNA orthologs. To determine the tissue-specific expression of (D) mouse- (2610035D17Rik) and (E)
human-conserved (LINC00673) lncRNAs relative to Sox9/SOX9, we downloaded RNA-seq expression data from NCBI BioProjects PRJNA66167 and
PRJEB4337, respectively. Error bars indicate standard error of the mean. Note: CPM, counts permillion; RPKM, reads per kilobasemillion.
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exposed to 1 ng=mL TCDD. Upon exposure to TCDD, an
increase in slincR expression is required for the functional
enrichment of many sox9b-regulated processes, including carti-
lage development, ossification, and bone remodeling, as well as
cell adhesion and cell matrix interactions (SOX9 functions
reviewed in Jo et al. 2014). We saw evidence that slincR knock-
down in the presence of TCDD can also alter the structure of cra-
niofacial cartilage. In our morphometric analysis of the cartilage
structure, both the control and slincR morphants exposed to
TCDD exhibited cartilage malformations; however, the slincR
morphants showed an abnormal junction between hyosymplectic
and ceratohyal cartilages in comparison with control morphants.
The functional enrichment and morphometric analyses support
the hypothesis that, upon TCDD exposure, Ahr2 increases the
expression of slincR, which in turn represses sox9b via enrich-
ment at the 5' UTR, to produce craniofacial cartilage malforma-
tions. It is possible that the abnormal cartilage morphology in the
slincR morphants is due to incomplete slincR knockdown and
thus incomplete sox9b repression (i.e., higher expression of
sox9b) relative to the levels in the control morphant samples
exposed to TCDD. In other words, differing expression levels of
sox9b may be responsible for the altered cartilage structure,
because sox9b is a master regulator of cartilage development.

In addition to theAHR-dependent induction of slincR, other fac-
tors may be acting to repress sox9b expression. For example, cross-
talk between AHR and Wnt=b-catenin signaling pathways is well
established (Schneider et al. 2014;Wincent et al. 2015). Inmamma-
lian epithelial stem cell in vitro experiments, SOX9 and WNT
signaling cooperate in a mutually repressive manner to regulate pro-
liferation, differentiation, and quiescence (Menzel-Severing et al.
2018). In mice, deletion of b-catenin in headmesenchyme provided
in vivo evidence that suggests b-catenin is essential for proper skele-
tal linage differentiation by inhibiting mesenchymal osteoblastic
cells from entering the chondrocyte linage (Hill et al. 2005). Gene
expression measurements in the b-catenin mutant displayed a sig-
nificant increase in expression of Sox9 and its upstream regulator
Runx2, which argues that b-catenin is not directly regulating Sox9.
In zebrafish, several publications have supported the hypothesis
that xenobiotic activation of the AHR leads to a disruption in
Wnt=b-catenin signaling, and that this disruption in Wnt signaling
has a causal role in AHR-mediated toxicities (Mathew et al. 2008;
Wincent et al. 2015). Using the zebrafish caudal fin regeneration
model, we have previously shown that TCDD-induced AHR activa-
tion blocks the tissue regeneration process via activation of the
Wnt=b-catenin signaling pathway, leading to improper formation of
the wound epithelium and blastema (Mathew et al. 2008). The
TCDD-induced block in caudal fin regeneration is prevented by
antisense knockdown of a Wnt coreceptor (lrp6) that induces
b-catenin signaling. In addition, exposure to a pharmacological agent
(6-bromoindirubin-30-oxime) that overactivates the Wnt signaling
pathway phenocopied the TCDD-induced block in fin regeneration.
In response to AHR activation, it is likely that genes involved in mul-
tiple signaling pathways are disrupted and acting in concert to repress
expression of sox9b and/or inhibit normal cartilage development.

The AHR regulates vasculature remodeling of the developing
embryo, and dysregulation can lead to abnormal development of
vasculature structures (Lahvis et al. 2000; Walisser et al. 2004).
Developmental exposure to TCDD or PAHs can produce blood
circulation defects and cyp1a1 expression in the vasculature
(Andreasen et al. 2002; Chlebowski et al. 2017; Henry et al.
1997). Our transcriptome profiling and functional enrichment
analyses suggest slincR expression regulates processes involved
in angiogenesis, vascular smooth-muscle cell proliferation, blood
vessel endothelial cell migration, blood coagulation, and blood
vessel morphogenesis.

Upon exposure to a strong Ahr2 ligand, a toxicity phenotype
that occurs early in zebrafish development is disruption of blood
cell development and hemorrhaging (Belair et al. 2001; Henry
et al. 1997). To elucidate the phenotypic impact of slincR expres-
sion on TCDD-induced hemorrhaging, we developmentally
exposed control and slincR morphants to TCDD and recorded the
presence or absence of hemorrhaging. In concordance with the
RNA-seq data, we demonstrated that upon TCDD exposure, pre-
venting the induction of slincR can prevent a significant percent-
age of zebrafish from displaying the hemorrhaging phenotype;
however, knocking down slincR did not result in the complete ab-
sence of the hemorrhaging phenotype. Although this discrepancy
could be due to the incomplete knockdown of slincR, it is also
possible that the activation of the AHR results in the dysregula-
tion of multiple regulatory networks that are required for normal
angiogenesis and vascular development. Our data suggest ahr2-
dependent expression of slincR plays a causal role in TCDD-
induced hemorrhaging. Additional experiments are required to
understand how slincR expression regulates processes such as
angiogenesis and vasculature development at the gene-network,
cellular, and tissue levels.

PART III: Investigation of PAHs that Increase slincR
Expression
The AHR is ligand-activated by numerous PAHs, which pose a
major concern due to their potential toxic effects on ecosystems
and human health (Chlebowski et al. 2017; Geier et al. 2018;
Perera 1997). For example, exposure of pregnant women to high
levels of air pollution, which is a complex heterogeneous mixture
containing numerous PAHs, has been associated with an increase
in the risk of impaired neural development and congenital heart
defects in their children (Brook et al. 2004; Edwards et al. 2010).
To screen for environmentally relevant PAHs that upregulate
slincR expression and activate the AHR signaling pathway, we
mined a 16 PAH RNA-seq dataset from 48-hpf whole zebrafish
embryos generated by Dr. M. Geier from the Tanguay lab. We
identified six PAHs that significantly up-regulate slincR expres-
sion, including benzo[k]fluoranthene, dibenzo[a,h]pyrene, and
dibenzo[a,i]pyrene from the U.S. Environmental Protection
Agency’s priority PAH list. Our screen also identified three PAHs
(retene, dibenzo[a,h]pyrene, and dibenzo[a,i]pyrene) that cause a
significant increase in slincR expression and were recently shown
to induce cyp1a1 vasculature expression (Geier et al. 2018). The
Geier study also reported that fluoranthene and 9-methylanthra-
cene induced cyp1a1 expression in the vasculature; however, our
data did not show a significant increase in slincR expression for
these two PAHs, emphasizing the ligand-specific transcriptional
responses of AHR activation (Geier et al. 2018).

None of the PAHs screened resulted in a significant decrease
in sox9b expression even though benzo[k]fluoranthene and benzo
[j]fluoranthene were able to produce larger log2ðfold changeÞ
increases (4.0 and 3.9) in slincR expression than did TCDD expo-
sure (3.1). LncRNAs have a more restricted tissue-specific
expression pattern in comparison with mRNAs (Fatica and
Bozzoni 2014). Thus, it is possible that slincR induction was
localized to tissue where sox9b is not highly expressed. We previ-
ously showed that exposure to TCDD increased slincR expression
in the otic vesicle and jaw or snout regions (Garcia et al. 2017). It
is also possible that slincR regulates additional genes, beyond
sox9b. Future experiments will identify the tissues in which
slincR expression is increased upon exposure to select PAHs.
Elucidating the transcriptional responses and target organs of
ligand-specific AHR activation is a key process required to begin
to classify and predict how chemicals, like PAHs, produce toxic
responses. The developmental toxicity and functional enrichment
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analyses of the 16 PAHs screened will be addressed in a forth-
coming study from the Tanguay laboratory.

Our current study includes several limitations. For example,
we used morpholinos, which are a transient method of knocking
down gene expression. Another limitation of our study is that we
were unable to maintain adequate slincR repression at 72 hpf,
which prevents us from fully understanding the functional impact
of slincR expression on TCDD-induced toxicity phenotypes that
occur later in development. In future studies, we will use a
CRISPR/Cas9-generated slincR knockout line to determine the
phenotypic impact of slincR expression on later developmental
stages. Additionally, our RNA sequencing analysis resulted in a
dramatic decrease in the number of significant genes in response
to TCDD exposure in the slincR morphants, in comparison with
control morphants. One notable limitation of RNA sequencing is
the inability to distinguish direct and indirect changes in gene
expression; therefore, we are unable to determine if the difference
in gene expression is because of the direct regulation of slincR on
sox9b and additional target genes or if the difference is because
of indirect regulation downstream of slincR target genes. Future
studies will identify the genome-wide binding sites of slincR
using CHART-sequencing, which has previously shown that
lncRNAs can bind hundreds of regions throughout the genome to
regulate transcription (West et al. 2014).

Conclusion
We further elucidated the mechanism of TCDD-induced repres-
sion of sox9b in the developing zebrafish by showing that slincR is
enriched at the 5' UTR of the sox9b locus to repress transcription.
We used transcriptome profiling and functional enrichment analy-
ses to demonstrate that ahr2-dependent expression of slincR is
involved in processes such as angiogenesis and cartilage and vas-
culature development. Our data suggest that slincR expressionmay
play a causal role in the TCDD-induced hemorrhaging phenotype,
can regulate cartilage development, and is up-regulated bymultiple
environmentally relevant PAHs. We identified potential mouse
and human orthologs of slincR in support of the human health rele-
vance of the zebrafish model. In summary, these data enhance our
mechanistic understanding of how AHR activation by environ-
mental pollutants can lead to adverse health effects.

Acknowledgments
This research was partially supported by NIH grants P42

ES016465, R21 ES025421, T32 ES07060, F31 ES026518, and
P30 ES000210. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the NIH. We would also like to thank the agents of Sinnhuber
Aquatic Research Laboratory (SARL), especially C. Barton and
G. Gonnerman, for all their help regarding fish husbandry.
Finally, we thank the generosity of Dr. R. Peterson and Dr. M.
Geier for allowing us to mine their unpublished RNA sequencing
datasets, which greatly enhanced the quality of this study.

References
Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. 2002. The

transcription factor Sox9 has essential roles in successive steps of the chon-
drocyte differentiation pathway and is required for expression of Sox5 and
Sox6. Genes Dev 16(21):2813–2828, PMID: 12414734, https://doi.org/10.1101/gad.
1017802.

Anders S, McCarthy DJ, Chen Y, Okoniewski M, Smyth GK, Huber W, et al. 2013.
Count-based differential expression analysis of RNA sequencing data using R
and Bioconductor. Nat Protoc 8(9):1765–1786, PMID: 23975260, https://doi.org/
10.1038/nprot.2013.099.

Anders S, Pyl PT, Huber W. 2015. HTSeq–a Python framework to work with high-
throughput sequencing data. Bioinformatics 31(2):166–169, PMID: 25260700,
https://doi.org/10.1093/bioinformatics/btu638.

Andreasen EA, Spitsbergen JM, Tanguay RL, Stegeman JJ, Heideman W,
Peterson RE. 2002. Tissue-specific expression of AHR2, ARNT2, and CYP1A in
zebrafish embryos and larvae: effects of developmental stage and 2,3,7,8-tetra-
chlorodibenzo-p-dioxin exposure. Toxicol Sci 68(2):403–419, PMID: 12151636,
https://doi.org/10.1093/toxsci/68.2.403.

Andrews S. 2015. FastQC: A Quality Control Tool for High Throughput Sequence
Data. Version 0.11.3. Cambridge, UK: Babraham Bioinformatics. https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/.

Antkiewicz DS, Peterson RE, Heideman W. 2006. Blocking expression of AHR2 and
ARNT1 in zebrafish larvae protects against cardiac toxicity of 2,3,7,8-tetrachlor-
odibenzo-p-dioxin. Toxicol Sci 94(1):175–182, PMID: 16936225, https://doi.org/10.
1093/toxsci/kfl093.

Barrionuevo FJ, Hurtado A, Kim G-J, Real FM, Bakkali M, Kopp JL, et al. 2016. Sox9
and Sox8 protect the adult testis from male-to-female genetic reprogramming
and complete degeneration. Elife 5:e15635, PMID: 27328324, https://doi.org/10.
7554/eLife.15635.

Barton CL, Johnson EW, Tanguay RL. 2016. Facility design and health management
program at the Sinnhuber Aquatic Research Laboratory. Zebrafish 13(Suppl 1):
S39–S43, PMID: 26981844, https://doi.org/10.1089/zeb.2015.1232.

Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. 2008. The aryl hydrocar-
bon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene
Expr 18(3):207–250, PMID: 18540824, https://doi.org/10.1615/CritRevEukarGeneExpr.
v18.i3.20.

Belair CD, Peterson RE, Heideman W. 2001. Disruption of erythropoiesis by dioxin
in the zebrafish. Dev Dyn 222(4):581–594, PMID: 11748828, https://doi.org/10.
1002/dvdy.1213.
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